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A method is proposed for numerically solving the integro-differential, radiative-transfer equation with the use
of its piecewise-analytic solutions obtained by the discrete-ordinate method and grids constructed by the finite-
element method. The advantages of the method proposed and some results of calculation of the radiative-
transfer characteristics for one-, two-, and three-dimensional problems are discussed.

Radiative energy transfer is of crucial importance in many natural and technical processes of energy exchange.
This pertains equally to high-temperature processes (combustion of organic fuels, thermal treatment of metals, high-
temperature synthesis and pyrolysis in chemical technologies, etc.) where the radiative energy transfer accounts for
90% or more of the total energy exchange (see, for example, [1–4]) and to the processes occurring at lower atmos-
pheric temperatures [5, 6]. It is known that an exact estimation of the characteristics of heat and mass transfer in tech-
nological processes allows one to obtain a significant economical effect, i.e., to increase the quality and functional
characteristics of products and decrease their cost, as well as to make for good environmental conditions and to con-
serve material, energy, and manpower resources. For example, the temperature fields of many technological processes
(several tens of them are described in [1, 2]) occurring at temperatures from 125 to 1600oC should be calculated with
an accuracy of D1–2oC.

Radiative heat exchange plays a dominant role in the total heat exchange in high-temperature processes in
gaseous media. The accuracy of estimation of the temperature fields of such media is primarily dependent on the cor-
rectness of calculation of the radiative-transfer characteristics. This is also very important for optimization of the heat-
ing of steel products having a different geometry in ring furnaces with a moving bottom in which the working
temperatures can reach 1200oC.

Mathematical Model. It is difficult to calculate the characteristics of radiative heat transfer in selectively
emitting, absorbing, and scattering media because, in this case, it is necessary to take into account the multiple proc-
esses of reradiation on solid particles, the selectivity of the radiation of gas components, and the temperature inhomo-
geneity and complex configuration of the radiating volume. The correctness of estimation of the radiative-heat-exchan-
ge characteristics depends, to a large extent, on the correctness of solution of the radiative-transfer equation [7–9]. In
the case of a local thermodynamic equilibrium, this equation defines the law of conservation of radiant energy in the
process of its propagation in an absorbing, emitting, and scattering medium:

l⋅∇ Iλ (r, l) + [χλ (r) + σλ (r)] Iλ (r, l) = χλ (r) Bλ (T (r)) + 
σλ (r)

4π
 ∫ 
4π

pλ (r, l, l′) Iλ (r, l′) dΩ′ . (1)

The boundary conditions for Eq. (1) are determined by the radiation and reflection processes  occurring on
the boundary surfaces of the medium and can be written, in the general case, as [9]
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Iλ (P, l) (l⋅n)<0 = I0λ (P, l) + 
1
π

 ∫ 
2π

ρλ (P, l, l′) Iλ (P, l′) (l′⋅n) dΩ′ . (2)

Having determined the radiation-intensity field from Eqs. (1) and (2), we may determine two more energy
quantities necessary for calculating the temperature of the medium — the volume density of the radiation sources/heat
flows at each point of the medium

div Qr = ∫ 
0

∞

χλ (r) 



4πBλ (T (r)) − ∫ 
4π

Iλ (r, l) dΩ



 dλ (3)

and the local densities of the resulting radiant flux on the heat-absorbing surfaces (if they exist)

qw
r

 (P) = ∫ 
0

∞

ε 



 ∫ 
2π

Iλ (P, l) (l⋅n) dΩ − πBλ (Tw (P))



 dλ . (4)

Examples of such surfaces include the lining of a furnace and the surfaces of steel products heated in this furnace.
Brief Review of Modern Methods of Solving the Radiative-Transfer Equation. At present there are a

fairly large number of different methods of solving Eq. (1) with boundary conditions (2): the Monte Carlo method
[10]; the approximations of spherical harmonics [11], radiation elements [12], and characteristics [9, 13]; zonal meth-
ods [8], and others. A recent trend in the methodology of solving the radiative-transfer equation is the combination of
the discrete-ordinate method [7] with the finite-difference method [14, 15] or the finite-element method [3, 16]. The
popularity of this approach to the solution of the radiative-transfer equation is explained by the fact that the computa-
tional algorithm used in it is relatively simple and compatible with the computational schemes used in the case of dif-
ferent mechanisms of radiative transfer. There are also a number of other methods of attack of this problem; however,
a sufficiently reliable and efficient method of solving the radiative-transfer equation is absent at the moment. Each of
the existing methods has disadvantages that limit the range of its application. For example, the method of finite ele-
ments or finite volumes can be used for solving a limited range of ordinary differential equations (of the first order,
the hyperbolic type) for nonuniform high-temperature heat flows; otherwise, physically incorrect results could be ob-
tained (e.g., negative values of the radiation intensity).

To demonstrate problems that could arise in the process of numerical solution of the radiative-transfer equa-
tion, we write the radiative-transfer equation in the one-dimensional formulation with account for the isotropic scatter-
ing. In this case, Eq. (1) is conveniently written in the form

µ 
∂I
∂x

 + αI (x, µ) = Y . (5)

Let us solve Eq. (5) in the finite-difference approximation by the explicit and implicit finite-difference schemes for the
segment [1 → 2] of length ∆l (the arrow designates the radiation-propagation direction) with homogeneous optico-
physical properties:

I2
an

 = I1 exp [− τat] + (1 − exp [− τat]) 
Y
α

 , (6)

I2
im

 = I1 
2 − τat

2 + τat
 + 

2Y∆l

µ (2 + τat)
 , (7)

I2
ex

 = I1 
1

1 + τat
 + 

Y∆l
µ (1 + τat)

 . (8)
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The radiation intensity at the boundary of the computational region is I1.
In the subsequent discussion, we will use the notion of optical thickness of a layer with respect to the ampli-

fication: γ = β∆lµ. In this case, Eqs. (6)–(8) can be represented in the form

I2
an

 = I1 



exp [− τat] + (1 − exp [− τat]) 

γ
τ



 , (9)

I2
im

 = I1 
2 (1 + γ) − τat

2 + τat
 , (10)

I2
ex

 = I1 
1 + γ

1 + τat
 . (11)

Analysis of Eqs. (7) and (10) shows that, at a certain relation between the parameters τat and γ, the radiation
intensity can be decreasing, oscillating, or even negative (Fig. 1). In the last-mentioned case, Prof. Fiveland (USA)
proposed to reduce the physically incorrect values of the radiation intensity to zero [17]. By way of example, we will
consider the distribution of the intensity of the radiation propagating in a plane layer in different directions, calculated
analytically and with the use of an implicit numerical scheme (Fig. 1). The implicit scheme gives decreasing, oscillat-
ing values of the radiation intensity. Such instabilities do not arise when an explicit difference scheme is used; how-
ever, the accuracy of the solution is much lower in this case as compared to that given by the implicit scheme (Table
1). Analogous results are obtained when the radiative-transfer equation is solved in the finite-element approximation.

Thus, to obviate the above-indicated errors, it is necessary to numerically solve the radiative-transfer equation
with the use of a computational grid having a fairly small pitch; however, this decreases the rate of calculation, espe-
cially in the case of optically thick media (e.g., a furnace medium investigated in the absorption bands of molecular
gases). Because of this, a pressing problem is the development of algorithms and methods for solving the radiative-

Fig. 1. Illustration of the problem on stable numerical solution of the radiative-
transfer equation: µ = 1 (1), 0.3 (2), 0.1 (3), and 0.01 (4) (the solid line is an
exact solution; the dashed line is a numerical solution). S = 10, α∆l = 1, I1 = 2.

TABLE 1. Comparison of the Accuracy of the Solutions Obtained by the Explicit and Implicit Difference Schemes (τat = 1)

γ εex = 1 − I2
ex ⁄ I2

an εim = 1 − I2
im ⁄ I2

an

0.1 0.072 –0.276

0.5 0.025 –0.097

1.0 0.000 0.000

10 –0.046 0.178
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transfer equation that would allow one to exactly estimate the radiant fluxes in inhomogeneous three-dimensional
media of complex geometry, in particular in technological processes occurring in a wide temperature range.

Numerical Method of Solving the Radiative-Transfer Equation. We propose a new approach to calculation
of the characteristics of radiative heat exchange in the most general and complex case of an absorbing, emitting, and
scattering medium having a complex three-dimensional geometry. In accordance with the method proposed, the radia-
tive-transfer equation (1) with boundary conditions (2) is numerically solved with the use of its piecewise-analytic so-
lutions. The results of solution of a number of practical problems by this method [4, 5, 18, 19] show that the method
considered is free of many of the disadvantages characteristic of other methods and has a number of advantages that
allow it to be used for solving a substantially wider range of problems associated with radiative energy transfer. The
method developed by us provides a higher accuracy and rate of solution of the problem studied, as compared to other
methods, and, at the same time, calls for smaller computational resources for its realization.

Our method is based on the combination of the discrete-ordinate method [3, 13–16] and the method of ray
tracing [13, 19]. In the latter method, the intensity distribution along the trajectory of a radiation ray propagating in a
medium is determined with allowance for the optical and geometric properties of this medium and its boundary surface
by piecewise-analytic solutions of Eq. (1). The spatial discretization of the computational region is carried out by the
finite-element method [16, 20], which allows one to describe complex configurations and retain the compatibility with
the computational schemes used for different mechanisms of energy transfer. As a result of the discretization, we ob-
tained a number of discrete elements (Ne) and points (Np) in which the radiation intensity was calculated.

Then we separated, by the discrete-ordinate method, Nd = 2 + NϕNθ radiation-propagation directions. For each
separated direction (k = 1 ... Nd), Eq. (1) can be written in the form

∂
∂lk

 I (r, lk) + a (r) I (r, lk) = Y
 k

 ,   Y
 k

 = χBλ + 
σ
4π

 S
k
 (r) , (12)

where lk = sin θk cos ϕki + sin θk sin ϕkj + cos θkk; S k is the integral term in Eq. (1) which, just as the density of the
incident radiant flux, is approximated by the Gauss quadrature formula [21] at each point of the computational region
(i = 1 ... Np):

Qf.w
i

 = ∫ 
2π

Iλ (Pi, l) (l⋅n) dΩ C ∑ 

m=1

Nd

 AmIi
mϑ  (lm, ni); Si

k
 = ∫ 

4π

ρλ (ri, l
k
, l) Iλ (ri, l) dΩ C ∑ 

m=1

Nd

AmIi
m

p (ri, lk, lm); (13)

Am are the weights of the Gauss quadrature formula. The function ϑ(lm, ni) is determined as

ϑ  (l, n) = 




l⋅n ,
0 ,

     
l⋅n ≥ 0 ;
l⋅n < 0 .

(14)

The scattering indicatrix p(ri, lk, lm′ ) is usually expressed in terms of the Legendre polynomial [9, 13]:

p (r, l, l′) =  ∑ 

n=0

N

 (2n + 1) anP (r, l, l′) . (15)

Note that it can be used, for many urgent problems of radiative transfer, in the approximation [9]

p (r, l, l′) = a (r) [1 − 4πδ (l − l′)] . (16)

Note that the scattering indicatrix of an elementary volume can be calculated using the Mie theory.
After the computational region is divided into finite elements and the radiation-propagation directions are se-

lected, the problem of ray tracing is considered. The scheme of ray tracing is presented in Fig. 2. The radiation inten-
sity at the point Pi is determined by the contribution of the radiation intensities at all the points of the volume in the
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path of the ray from the boundary point P0, at which it is known, to the point considered. The desired radiation in-
tensity can be formally represented, with the use of (12), in the form [9]

I (Pi) = I (P0) T (P0, Pi) + ∫ 
P0

Pi

Y (s) T (s, Pi) ds , (17)

where T(A, B) = exp 






− ∫ 

A

B

α(s)ds






 is the transmission coefficient along the trajectory of the ray travelling between the

arbitrary points A and B. As is seen from Fig. 2, the ray trace intersects discrete elements. In this case, the solution
of (10) is a superposition of the solutions for the trace segments in these element. The formulas for calculating the
radiation intensity (17) in discrete elements are constructed with allowance for the features of the concrete problem
considered. The accuracy of the interpolation of the attenuation coefficient α(s) depends on the degree of inhomo-
geneity of the medium, and the source function Y(s) is selected depending on the medium inhomogeneity. For exam-
ple, in the case of a linear interpolation, the expression for I(Pk+1) has the form

I (Pk+1) = 
















I (Pk) − 

Yk

α~
 + 

Yk+1 − Yk

α~2∆k




 exp [− α~∆k] + 

Yk+1

α~
 − 

Yk+1 − Yk

α~2∆k

 ,   α~∆k ≥ 10
−5

 ;

I (Pk) + 
∆k

2
 (Yk+1 + Yk) ,   α

~∆k < 10
−5

 ,

(18)

where ∆k =  Pk, Pk+1  is the length of the trace segment in a discrete element and α~ = (αk+1 + αk)/2. Thus, the pro-
cedure for determining the radiation intensity at the point Pi with the use of (17) and (18) is as follows:

1. The trace of the ray traveling from the point Pi to the point P0 at the boundary is determined with allow-
ance for the direction of propagation of the ray and its refraction in the bulk of the medium. In this case, the auxiliary
points Pk, representing the points of intersection of the ray trace with the faces of the computational grid elements, are
determined. It should be noted that, with the method proposed, one can take into account the changes in the refractive
index of the medium. This important advantage of the method allows it to be used for calculating the intensity of ra-
diation propagating in very inhomogeneous media.

2. The radiation intensity at the boundary point P0 is calculated with allowance for the boundary conditions
(2).

3. The radiation intensity along the ray trace, including the point Pi, is calculated by the recurrence formula
(18).

Fig. 2. Scheme of ray tracing.
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Since the right side of the radiative-transfer equation (1) and the boundary conditions (2) are dependent on the
desired values of the radiation intensity, it is necessary to perform iteration to refine the integral terms in expressions
(1) and (2). The computational algorithm used for determining the radiative-transfer characteristics includes the follow-
ing operations:

1. The initial values of the radiation intensity are prescribed. In particular, it may be assumed that Ii
k = 0 for

all the grid points and radiation-propagation directions.
2. The density of the radiation flux incident on the boundary of the medium is determined using formulas

(12) and (13).
3. The integral term in the radiative-transfer equation S k(r) is calculated by formula (4) for each of the radia-

tion propagation directions k = 1 ... Nd selected. Then the radiation intensity Ii
k at each point of the computational re-

gion (i = 1 ... Np) is calculated by the above-described scheme of ray tracing with the use of the piecewise-analytic
solutions (17) and (18). The relative error in the values obtained in the neighboring iterations is calculated by the for-
mula

δ = max
i,k

  1 − Ii
k,s ⁄ Ii

k,s+1  . (19)

4. If the desired accuracy is not attained (δ > δ0, where δ0 is the accuracy prescribed in advance), the calcu-
lation is repeated, beginning with Sec. 2.

5. If conditions (19) are fulfilled, we obtain a basic set of radiation intensities Ii
k for determining the integral

terms in Eq. (1) at boundary conditions (2). Then, using the above-described scheme of ray tracing, one may calculate
the radiation intensity at any point of the computational region and in any radiation propagation direction without re-
sorting to the interpolation between the basic points and basic directions.

Main Advantages of the Method Proposed for Solving the Radiative-Transfer Equation. The above-de-
scribed computational algorithm allows one to calculate the characteristics of radiative transfer in absorbing, emitting,
scattering, and reflecting media of complex geometry. In Fig. 3, the possibilities of the method proposed are demon-
strated by the example of the results of calculation of the density of a radiant flux incident on the boundary surface
of four absorbing and emitting regions having a complex three-dimensional geometry. It is seen from the results pre-
sented in this figure that the incident radiant flux is most inhomogeneous in the neighborhood of the regions with a
sharply varying surface curvature.

The algorithm proposed works well in the case of media with small and large optical densities, for which
other methods can give physically incorrect results. This algorithm cannot give, in principle, negative or oscillating
values of the radiation intensity.

Since items 3 and 4 of the computational algorithm represent separate problems, the intensity of radiation can
be calculated for each prescribed direction of its propagation with the use of multiprocessor computational systems.

When our results are compared with the results of other authors and known analytical solutions, it is apparent
that the method proposed provides a high accuracy of calculations. For example, our results agree with the known ana-
lytical solutions within the computer error.

TABLE 2. Time of Calculation of the Problem on Radiative Transfer for Regions of Different Dimension at a Different
Number of Spatial and Angular Discretizations of the Computational Region

1-D problem (Nd = 9) 2-D problem (Nd = 17) 3-D problem (Nd = 26)

N Np Ne t, sec Np Ne t, sec Np Ne t, sec

5 5 4 0.0    25 32 0.08  125 384 1.45

7 7 6 0.005 49 72 0.155 343 1286 4.45

9 9 8 0.0075 81 128 0.26  729 3072 10.38 

11 11 10 0.009 121 200 0.39  1331 6000 20.87 

15 15 14 0.012 225 392 0.785 3375 17640  70.65 

17 17 16 0.015 289 512 1.054 4913 26112  110.65  
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One of the most important advantages of the method proposed, as compared to the finite-difference and finite-
element methods [16, 17], is that it allows one to obtain a solution in explicit form without resorting to solving the
system of algebraic differential equations. This makes it possible to substantially decrease the time of calculations and
the amount of random access memory. Table 2 presents, as a case in point, the times of radiative transfer in media of
simple 1–3-D geometries (segment, square, cube), calculated with the use of different numbers of spatial and angular
discretizations on a low-power computer with a 133-MHz processor. These data were obtained for media with an op-
tical density equal to unity with the use of three iterations. For media with optical densities from 0 to 100, the time
of calculation differed from the time given in the table by no more than 5%. The results obtained show that, in the
three-dimensional case, an element-direction iteration is calculated for D5⋅10−5 sec  with the use of the algorithm pro-
posed and the above-mentioned computer. The solution of this problem by the finite-element and discrete-ordinate
methods [16] using the same computer takes almost 100 times longer (4.5⋅10−3 sec for an element-direction iteration).
For comparison, we also give the data obtained in [16], where the calculation of a point-direction iteration by the dis-
crete-ordinate and finite-difference methods took 2.2⋅10−4 sec of operation of a VAX 11/785 processor. As is seen
from the comparison presented, the algorithm proposed provides a high rate of calculations due to the absence of the
need for solving the system of algebraic equations and because of the use of a special algorithm for determining the
ray trace in a region covered with an irregular grid. With this algorithm, neighboring elements having common faces
are determined and stored in the process of construction of a computational finite-element grid. After this grid is con-
structed, the determination of the ray trace becomes algorithmically trivial.

Fig. 3. Distribution of the density of the radiant flux incident on the boundary
surface of an absorbing and emitting medium (χ = 1.0 m−1, the boundaries are
transparent, the lower boundary is mirror).
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It should be noted that the method proposed is similar, in some sense, to the Monte Carlo method of direct
physical simulation. However, in our method, unlike the Monte Carlo method, the statistical approach is used instead
of the deterministic approach for determining the desired quantities. At the same time, it allows one to solve all of the
problems that are solved by the Monte Carlo method and substantially decreases the calculation time, especially in the
case of optically thick media.

Examples of Calculation of Radiative-Transfer Characteristics for One-, Two-, and Three-Dimensional
Problems. A traditional procedure used in solving certain physical and technical problems is decreasing the dimension
of the problem. In some cases, this can be done at the expense of the symmetry of the problem; however, in the ma-
jority of cases, the dimension of a problem is decreased because of substantial computational difficulties. With the ex-
amples considered in this section, we will show that, in the case of calculation of the radiative heat transfer in media
with absorption and scattering, a decrease in the dimension of the problem can lead to large errors. The above-de-
scribed method of solving the radiative-transfer equation will be used for calculations. Figure 4 presents computational
grids for one-, two-, and three-dimensional problems. The equivalent points of these grids, used for comparison of in-
cident radiant fluxes, are marked by identical letters. We considered homogeneous and inhomogeneous media. It was
assumed that a homogeneous medium is a gas medium with a constant temperature and an inhomogeneous medium is
a gaseous region with a hot core at its center. An example of such a medium is the space of a furnace with a flame
inside it. It was assumed that the Schlichting temperature distribution is realized inside the inhomogeneous region. In
this case, the radiation intensity at the colder boundaries of the region was ten times lower than the radiation intensity

Fig. 4. Computational schemes for one- (1-D), two- (2-D), and three-dimen-
sional (3-D) problems. A, B, and C are the points of the system, used for
comparison of radiant fluxes.

Fig. 5. Dependence of the reduced density of the incident radiant flux on the
optical density with respect to the absorption, determined for homogeneous (a)
and inhomogeneous (b) media: 1) one-dimensional problem; 2 and 4) two-di-
mensional problem, 3, 5, and 6) three-dimensional problem [1, 2, and 3) radi-
ant flux at the point A; 4 and 5) radiant flux at the point B; 6) radiant flux at
the point C (the arrangement of points A, B, and C is shown in Fig. 4)].

151



at its center. The maximum temperature at the center of the inhomogeneous region was equal to the temperature of the
homogeneous region. In the calculations, this maximum temperature was 2000 K and the temperature at the boundaries
was 1120 K.

Figure 5 presents the results of parametric investigations of the dependence of the reduced density of the in-
cident radiant flux Q on the optical density τ with respect to the absorption for homogeneous and inhomogeneous
media. In this case, τ is determined from the expression [3]

τ = 
1

U
d−1

d

 ∫ ... ∫ χ (r) dU . (20)

Here, d is the dimension of the problem (d can be equal to 1, 2, or 3), U is the geometric dimension of the region
(thickness, area, or volume, respectively), and the d-dimensional integral is calculated throughout the absorbing region.
Analysis of the results obtained shows that, both in the case of a medium with a low optical density (τ D 0.1) and in
the case of a medium with a high optical density (τ D 10), a decrease in the dimension of the problem does not lead

Fig. 6. Dependence of the reduced density of the incident radiant flux on the
blackness of the boundary surface, determined for homogeneous (a, b, c) and
inhomogeneous (d, e, f) media: τ = 0.1 (a, d), 1.0 (b, e), and 10 (c, f). Desig-
nations 1–6 are identical to those in Fig. 5.
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to large errors in the calculation of the incident radiant flux. However, at intermediate values of the optical density of
a medium (τ D 1), this error increases substantially and can reach 100%. This points to the fact that the dimension of
a problem on radiative transfer can be decreased only after the statement of this problem is thoroughly analyzed. In
this case, prominence should be given to the optical density of the medium studied.

Figure 6 presents results of parametric investigation of the dependence of the reduced density of an incident
radiant flux Q on the blackness ε of the boundary surface of homogeneous and inhomogeneous media having different
optical densities. In this case, the error introduced by the decrease in the dimension of the problem is most significant
for media with a small optical density, and this error decreases with increase in the optical density.

CONCLUSIONS

1. An efficient numerical method of solving the radiative-transfer equation for absorbing, emitting, and scat-
tering media of complex geometry has been proposed.

2. The method proposed has been compared with known analogous methods.
3. The errors arising as a result of a decrease in the dimension of the problem on radiative transfer in an ab-

sorbing, emitting, and scattering medium have been calculated and analyzed using the algorithm developed by us.
4. The algorithm developed can be used for investigating the radiative transfer in energy-plant furnaces, nu-

clear reactors, and high-temperature chemical reactors as well as in the atmosphere and the cosmos.

NOTATION

a(r), doubled fraction of the radiation scattered backward by an elementary volume of the medium; an, coef-
ficients of the Legendre polynomial; Bλ(T), spectral intensity of the blackbody radiation at a temperature T; Bmax(T),
maximum intensity of the blackbody radiation at a temperature T; I, radiation intensity; Iλ(r, l), spectral intensity of
the radiation at the point r in the direction l; I0λ(P, l), spectral intensity of the intrinsic or outer radiation at the
boundary point P; l and l′, directions of the ray propagation; Y(s), source function; i, j, k, unit vectors of coordinate
axes; N, number of space points along each of the axes; ∆l, geometric length of the path of travel of the optical ra-
diation; Ne, number of discrete elements; Np, number of points; Nd, number of radiation-propagation directions; n, ex-
ternal normal to the boundary; Nϕ and Nθ, number of directions in the horizontal (0 ≤ ϕ ≤ 2π) and vertical (0 ≤ θ ≤ π)
planes, respectively; pλ(r, l, l′), indicatrix of scattering of radiation in the process of its interaction with an elementary
volume of the medium; qw

r (P), local density of the resulting radiation flux incident on a heat-absorbing surface at the
point P; Qr, volume density of radiation sources/heat flows; Qf.w(r), density of the radiant flux incident on the bound-
ary of the medium; r, radius-vector; S, integral term of Eq. (1); s, path of travel of the ray; T, temperature; t, time of
numerical calculation of the problem; X, Y, Z, coordinate axes; x, coordinate; α = χ + σ, coefficient of the complete
attenuation of radiation by the medium; χλ(r) and σλ(r), spectral coefficients of absorption and scattering, respectively;
β = Y/I1, amplification coefficient of the medium; δ, error; ε, degree of blackness; θ, angle between the radiation-
propagation direction and the external perpendicular to the boundary surface of the layer; µ = cos θ; λ, is the electro-
magnetic radiation wavelength; τat = α∆l ⁄ µ, optical thickness of the layer with respect to the attenuation of radiation
along the ray propagation direction; τ, optical density of the medium with respect to the absorption; θk and ϕk, polar
and azimuth angles in the spherical coordinate system; ∆k =  Pk, Pk+1 , length of the trace inside a discrete element;
ρλ(P, l, l′), spectral coefficient of reflection from the boundary; Ω, solid angle. Subscripts: an, analytical solution; im,
implicit solution; ex, explicit solution; p, point; d, direction; 0, points at the boundary; r, radiative; w, surface; f.w, in-
cident on the surface; λ, spectral characteristics; at, attenuation; max, maximum; e, element.
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